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We present an exact and Monte Carlo renormalization group �MCRG� study of semiflexible polymer chains
on an infinite family of the plane-filling �PF� fractals. The fractals are compact, that is, their fractal dimension
df is equal to 2 for all members of the fractal family enumerated by the odd integer b �3�b���. For various
values of stiffness parameter s of the chain, on the PF fractals �for 3�b�9�, we calculate exactly the critical
exponents � �associated with the mean squared end-to-end distances of polymer chain� and � �associated with
the total number of different polymer chains�. In addition, we calculate � and � through the MCRG approach
for b up to 201. Our results show that for each particular b, critical exponents are stiffness dependent functions,
in such a way that the stiffer polymer chains �with smaller values of s� display enlarged values of �, and
diminished values of �. On the other hand, for any specific s, the critical exponent � monotonically decreases,
whereas the critical exponent � monotonically increases, with the scaling parameter b. We reflect on a possible
relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on
the regular Euclidean lattices.
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I. INTRODUCTION

The self-avoiding walk �SAW� is a random walk that must
not contain self-intersections. It has been extensively studied
as a challenging problem in statistical physics, and, in par-
ticular, as a satisfactory model of a linear polymer chain �1�.
The pure SAW is a good model for perfectly flexible poly-
mer, where we ignore the apparent rigidity of real polymer,
and, consequently, to each step of SAW, we associate the
same weight factor �fugacity� x. In most real cases, the poly-
mers are semiflexible with the various degree of stiffness. To
take into account this property of polymers, in the continu-
ous space models, the stiffness of the SAW path is modeled
by constraining the angle between the consecutive bonds of
polymer, while in the lattice models, an energy barrier for
each bend of the SAW is introduced. The lattice semiflexible
SAW model �also known as persistent or biased SAW
model�, has been studied some time ago in a series of papers
�2�, with a focus on the so-called rod-to-coil crossover. Af-
terwards, it was modified in various ways, in order to de-
scribe relevant aspects of different phenomena, such as pro-
tein folding �3,4�, adsorption of semiflexible homopolymers
�5�, transition between the disordered globule and the crys-
talline polymer phase �6,7�, behavior of semiflexible poly-
mers in confined spaces �8,9�, or influence of an external
force on polymer systems �10–13�.

In spite of numerous studies, a scanty collection of exact
results for semiflexible polymers has been achieved so far,
even for the simplest lattice models. A few cases in which

some properties of semiflexible SAW can be studied exactly
are: directed semiflexible SAWs on regular lattices �5,14�,
and semiflexible SAWs �with no constraints on the direction�
on some fractal lattices �15,16�. In particular, exact values of
the end-to-end critical exponent � and the entropic exponent
� were obtained for these models, and it turned out that in
some cases, critical exponents are universal, whereas in other
cases, they depend on the stiffness of the polymer chain.
Universality arguments, as well as results of approximate
and extrapolation methods for similar models, suggest that
critical exponents on regular �Euclidean� lattices should not
be affected by the value of the polymer stiffness. On the
other hand, it is not known what are the effects of rigidity on
the critical behavior of SAWs in nonhomogeneous environ-
ment. In order to explore further this issue, in this paper we
perform the relevant study on the infinite family of the plane-
filling �PF� fractal lattices �17,18�, which allow for an exact
treatment of the problem. These fractals appear to be com-
pact, that is, their fractal dimension df is equal to 2. Members
of the family can be enumerated by an odd integer b �3�b
���, and as b→� characteristics of these fractals approach,
via the so-called fractal-to-Euclidean crossover �19,20�,
properties of the regular two-dimensional �2D� lattice. By
applying the exact real-space renormalization group �RG�
method �21,22�, as well as Monte Carlo renormalization
group �MCRG� method �23–26�, we calculate critical expo-
nents � and �. We have performed our calculations for as
many as possible members of the fractal family, for various
degree of polymer stiffness, in order to study consequent
stiffness dependence of the critical exponents, as well as to
see the asymptotic behavior of the exponents in the fractal-
to-Euclidean crossover region.

This paper is organized as follows. We define the PF fam-
ily of fractals in Sec. II, where we also present the frame-
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work of our exact and MCRG approach to the evaluation of
the critical exponents � and � of stiff polymers on the PF
fractals, together with the specific results. In Sec. III, we
analyze the obtained data for the critical exponents, and
present an overall discussion and pertinent conclusions.

II. SEMIFLEXIBLE POLYMERS ON THE PLANE-FILLING
FRACTAL LATTICES

In this section, we are going to apply the exact RG and
the MCRG method to calculate asymptotic properties of
semiflexible polymer chains on the PF fractal lattices. Each
member of the PF fractal family is labeled by an odd integer
b �3�b���, and can be constructed in stages. At the initial
stage �r=1�, the lattices are represented by the corresponding
generators �see Fig. 1�. The rth stage fractal structure can be
obtained iteratively in a self-similar way, that is, by enlarging
the generator by a factor br−1 and by replacing each of its
segments with the �r−1�th stage structure, so that the com-
plete fractal is obtained in the limit r→�. The shape of the
fractal generators and the way the fractals are constructed
imply that each member of the family has the fractal dimen-
sion df equal to 2. Thus, the PF fractals appear to be compact
objects embedded in the two-dimensional Euclidean space,
that is, they resemble square lattices with various degrees of
inhomogeneity distributed self-similarly.

In order to describe stiffness of the polymer chain, we
introduce the Boltzmann factor s=e−�/kBT, where � is an en-
ergy barrier associated with each bend of the SAW path, and
kB is the Boltzmann constant. For 0�s�1 �0�����, we
deal with the semiflexible polymer chain, whereas in the lim-
its s=1 ��=0� and s=0 ��=��, the polymer is a flexible
chain or a rigid rod, respectively. If we assign the weight x to
each step of the SAW, then the weight of a walk having N
steps, with Nb bends, is xNsNb, and consequently, the general
form of the SAW generating function can be written as

G�x,s� = �
N=1

�

�
Nb=0

N−1

C�N,Nb�xNsNb, �2.1�

where C�N ,Nb� is the number of N-step SAWs having Nb
bends. For large N, it is generally expected �1� that the total
number C�N ,s�=�Nb=0

N−1 C�N ,Nb�sNb of N-step SAW displays
the following power law:

C�N,s� � �NN�−1, �2.2�

where � is the entropic critical exponent, and � is the con-
nectivity constant. Accordingly, at the critical fugacity xc
=1 /��s�, we expect the following singular behavior of the
above generating function:

Gsing � �xc − x�−�. �2.3�

On the other hand, due to the self-similarity of the under-
lying structure, an arbitrary SAW configuration on the PF
fractals can be described, by using the three restricted gen-
erating functions A�r�, B�r�, and C�r� �see Fig. 2�, which rep-
resent partial sums of statistical weights of all feasible walks
within the rth stage fractal structure for the three possible
kinds of SAWs. One may verify that, for arbitrary b, the
generating function G�x ,s� is of the form

G�x,s� = �
r=1

�
1

b2r �g1�B�r−1�,s��A�r−1��2 + g2�B�r−1�,s��C�r−1��� ,

�2.4�

where the coefficients g1�B�r−1� ,s� and g2�B�r−1� ,s� are poly-
nomials in B�r−1� and s. This structure for G�x ,s� stems from
the fact that all possible open SAW paths can be made in
only two ways, using the rth order structures. The functions
A�r�, B�r�, and C�r� appear to be parameters in the correspond-
ing recursion �renormalization group� equations, which have
the form

A�r+1� = a�B�r�,s�A�r�, �2.5�

B�r+1� = b�B�r�,s� , �2.6�

C�r+1� = c1�B�r�,s��A�r��2 + c2�B�r�,s�C�r�, �2.7�

where the coefficients a�B�r� ,s�, b�B�r� ,s�, and ci�B�r� ,s�
�i=1,2�, are polynomials in terms of B�r� and s, and do not
depend on r. The established RG transformation should be

b=7
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(b)
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FIG. 1. �Color online� �a� The first three fractal generators
�r=1� of the plane-filling �PF� family of fractals. �b� The fractal
structure of the b=5 PF fractal at the second stage of construction,
with an example of a piece of a possible SAW path �thick line�. The
full dots represent the turn points of the walker �that is, the bends of
the SAW path�, to which we associate the Boltzmann factor s
=e−�/kBT, where ��0 is the energy of SAW bend. Thus, for ex-
ample, the presented SAW configuration should contribute the
weight x97s62 in the corresponding RG equation �more specifically,
in Eq. �2.6� for r=0�.

A
(r)

B
(r)

C
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FIG. 2. �Color online� A diagrammatic representation of the
three restricted partition functions for an rth order of the fractal
construction of a member of the PF family. The fractal interior
structure is not shown. Thus, for example, A�r� represents the SAW
path that starts somewhere within the fractal structure and leaves it
at its upper right link to rest of fractal.
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supplemented with the initial conditions: A�0�=	x, B�0�=x,
and C�0�=0, that are pertinent to the fractal unit segment.

The basic asymptotic properties of SAWs are character-
ized by two critical exponents � and �. The critical exponent
� is associated with the scaling law 
RN

2 ��N2� for the mean
squared end-to-end distance for N-step SAW, while the criti-
cal exponent � is associated with the total number of distinct
SAWs described by Eq. �2.2�, for very large N �1�. We start
by applying the above RG approach to find the critical ex-
ponent � for semiflexible polymers on PF fractals. We shall
first present the corresponding exact calculation, and then we
shall expound on the MCRG approach. To this end, we need
to analyze Eq. �2.6� at the corresponding fixed point. It can
be shown that b�B�r� ,s� in Eq. �2.6� is a polynomial

B� = �
N,Nb

P�N,Nb�BNsNb, �2.8�

where we have used the prime for the rth order partition
function and no indices for the �r−1�th order partition func-
tion. Knowing the RG Eq. �2.8�, value of the critical expo-
nent � follows from the formula �22�:

� =
ln b

ln 	�

, �2.9�

where 	� is the relevant eigenvalue of the RG Eq. �2.8� at the
nontrivial fixed point 0�B��s��1, that is,

	� = �dB�

dB
�

B�

. �2.10�

Consequently, evaluation of � starts with determining the
coefficients P�N ,Nb� of Eq. �2.8� and finding the pertinent
fixed point value B��s�, which is, according to the initial
condition B�0�=x, equal to the critical fugacity xc=1 /�.

We have been able to find exact values of P�N ,Nb� for
3�b�9. For the first two fractals �b=3 and 5�, the RG Eq.
�2.8� has the form

B� = B3 + 2B5s4, �2.11�

B� = B5 + 12B7s4 + 2B9s4 + 12B9s6 + 6B9s8 + 4B11s6 + 8B11s8

+ 2B13s8 + 4B13s10 + 2B15s12, �2.12�

respectively, while for b=7 and 9, they are disposed within
the Electronic Physics Auxiliary Publication Service
�EPAPS� �27�. Knowing P�N ,Nb�, for a given b, we use Eqs.
�2.8�–�2.10� to learn B��s� and the critical exponent ��s�. For
the b=3 PF fractal, the critical fugacity B� and the critical
exponent � can be obtained in the closed forms as functions
of the stiffness parameter

Bb=3
� �s� =

		1 + 8s4 − 1

2s2 , �2.13�

�b=3�s� =
ln 3

ln5 −
	1 + 8s4 − 1

2s4
� , �2.14�

while for b=5, 7, and 9, they can only be calculated numeri-
cally. We have chosen the set of six values for the polymer
stiffness parameter �s=1,0.9,0.7,0.5,0.3, and s=0.1� and
the obtained exact values are presented in the Tables I and II
�together with the results obtained by the MCRG method�.

To overcome the computational problem of learning exact
values of P�N ,Nb�, for fractals with b
11, we apply the
Monte Carlo renormalization group method �26�. The es-
sence of the MCRG method consists of treating B�, given by
Eq. �2.8�, as the grand canonical partition function that ac-
counts for all possible SAWs that traverse the fractal genera-
tor at two fixed apexes. In this spirit, Eq. �2.8� allows us to
write the following relation:

dB�

dB
=

B�

B

N�B�� , �2.15�

where 
N�B�� is given by


N�B,s�� =
1

B�
�

N,Nb

NP�N,Nb�BNsNb, �2.16�

which can be considered as the average number of steps,
made with fugacity B and stiffness s, by all possible SAWs
that cross the fractal generator. Then, from Eqs. �2.8� and
�2.10�, it follows:

	� = 
N�B�,s�� . �2.17�

The last formula enables us to calculate � via the MCRG
method, that is, without calculating explicitly the coefficients
P�N ,Nb�. For a given fractal �with the scaling factor b� and
the SAW stiffness s, we begin with determining the critical
fugacity B�. To this end, we start the Monte Carlo �MC�
simulation with an initial guess for the fugacity B0 in the
region 0�B0�1. Here, B0 can be interpreted as the prob-
ability of making the next step along the same direction from
the vertex that the walker has reached, while sB0 is the prob-
ability to make the next step by changing the step direction.
We assume that the walker starts his path at one terminus
�vertex� and tries to reach the other terminus of the generator.
In a case that the walker does not succeed to pass through the
generator, the corresponding path is not taken into account.
We repeat this MC simulation L times, for the same set B0
and s. Thus, we find how many times the walker has passed
through the generator, and by dividing the corresponding
number by L we get the value of the function �2.8�, denoted
here by B��B0 ,s�. In this way, we get the value of the sum
�2.8� without specifying the set P�N ,Nb�. Then, for a fixed s,
the next values Bn �n
1�, at which the MC simulation
should be performed, can be found by using the “homing”
procedure �25�, which can be closed at the stage when the
difference Bn−Bn−1 becomes less than the statistical uncer-
tainty associated with Bn−1. Consequently, B� can be identi-
fied with the last value Bn found in this way. Performing the
MC simulation at the values B� and s, we can record all
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possible SAWs that traverse the fractal generator. Then,
knowing such a set of walks, we can represent the average
value of the length of a walk �that traverse the generator� via
the corresponding average number of steps 
N�B� ,s��, and,
accordingly, we can learn the value of the � through the
formulas �2.17� and �2.9�. In Tables I and II, we present our
MCRG results for B� and �, respectively, for the chosen set
of s values, for the PF fractal lattices with 11�b�201.

To calculate the critical exponent �, we need to find the
singular behavior of the generating function G�x ,s�. The
structure of the expression �2.4� shows that the asymptotic
behavior of G�x ,s�, in the vicinity of the critical fugacity
xc�s�, depends on the corresponding behavior of the re-
stricted partition functions �2.5�–�2.7�. Assuming that the
singular behavior of Eq. �2.4� is of the form �2.3�, it can be
shown �18� that the critical exponent � should be given by

� = 2
ln�	�/b�

ln 	�

, �2.18�

where 	� is the RG eigenvalue

	� = a�B�,s� , �2.19�

of the polynomial a�B�n−1� ,s� defined by Eq. �2.5�, with B�

being the fixed point value of Eq. �2.8�. Therefore, it remains

either to determine exactly an explicit expression for the
polynomial a�B�n−1� ,s�, or somehow to surpass this step and
to evaluate only the single needed value a�B� ,s�. We have
been able to determine the exact form of the requisite poly-
nomial for the PF fractals with 3�b�9, while for b
11,
we have applied the MCRG to evaluate a�B� ,s�.

In order to learn an explicit expression of the polynomial
a�B�r−1� ,s�, we note that its form, due to the underlying self-
similarity, should not depend on r, and, for this reason, in
what follows, we assume r=1. Then, one can verify the fol-
lowing expression:

a�B,s� = �
N,Nb

Q�N,Nb�BNsNb, �2.20�

where Q�N ,Nb� is the number of all SAWs of N steps, with
Nb bends, that start at any bond within the generator �r=1�
and leave it at a fixed exit. By enumeration of all relevant
walks, the coefficients Q�N ,Nb� can be evaluated exactly up
to b=9. For b=3 fractal, the polynomial �2.20� is of the form

a�B,s� = 1 + B + 2Bs + B2 + 2B2s + 2B2s2 + 2B3s2 + 2B3s3

+ 4B4s3 + 4B4s4 + 2B5s4 + 2B6s5, �2.21�

for b=5, it is given in the Appendix, while for b=7 and 9,

TABLE I. The exact �3�b�9� and MCRG �11�b�201� results for the critical fugacities B� of the PF
family of fractals. Each MCRG entry of the table has been obtained by performing at least 105 MC simu-
lations. The numbers in the brackets represent the MCRG errors concerning the last two digits, for instance,
for b=101 fractal, the reading should be the following: B��s=1�=0.38815�05��0.38815�0.00005. The
values for b=� are obtained by linear extrapolation of MCRG values.

b B��s=1� B��s=0.9� B��s=0.7� B��s=0.5� B��s=0.3� B��s=0.1�

3 0.70711 0.75595 0.85923 0.94815 0.99212 0.99990

5 0.59051 0.63304 0.73677 0.86443 0.97258 0.99965

7 0.53352 0.57132 0.66544 0.79312 0.94262 0.99924

9 0.50029 0.53516 0.62208 0.74257 0.90676 0.99866

11 0.47863�23� 0.51141�24� 0.59352�26� 0.70754�27� 0.87251�13� 0.99785�05�
13 0.46319�14� 0.49449�20� 0.57335�22� 0.68289�24� 0.84351�25� 0.99679�07�
15 0.45191�13� 0.48212�18� 0.55857�20� 0.66399�21� 0.82073�22� 0.99525�08�
17 0.44321�11� 0.47307�17� 0.54733�18� 0.64984�19� 0.80218�20� 0.99315�09�
21 0.43065�10� 0.45927�06� 0.53091�07� 0.62963�16� 0.77512�17� 0.98700�10�
25 0.42207�08� 0.45005�12� 0.51956�06� 0.61549�14� 0.75663�14� 0.97767�11�
31 0.41323�06� 0.44057�10� 0.50811�11� 0.60115�15� 0.73802�12� 0.96076�10�
35 0.40913�06� 0.43611�09� 0.50276�10� 0.59441�11� 0.72923�11� 0.95010�10�
41 0.40420�04� 0.43086�06� 0.49664�04� 0.58698�10� 0.71913�10� 0.93637�08�
51 0.39893�07� 0.42498�07� 0.48969�03� 0.57825�15� 0.70797�09� 0.91977�07�
61 0.39524�06� 0.42112�06� 0.48493�07� 0.57259�07� 0.70032�08� 0.90832�08�
81 0.39081�05� 0.41638�05� 0.47933�03� 0.56545�07� 0.69079�11� 0.89413�05�

101 0.38815�05� 0.41344�06� 0.47601�11� 0.56137�06� 0.68541�06� 0.88578�08�
121 0.38649�04� 0.41167�07� 0.47373�09� 0.55862�05� 0.68184�05� 0.88007�04�
151 0.38479�02� 0.40989�09� 0.47163�04� 0.55592�08� 0.67825�05� 0.87459�11�
171 0.38399�03� 0.40894�06� 0.47054�06� 0.55464�04� 0.67668�04� 0.87217�07�
201 0.38316�06� 0.40803�02� 0.46951�11� 0.55321�09� 0.67480�04� 0.86939�09�
]

� 0.37915�40� 0.40189�12� 0.46217�15� 0.54424�15� 0.66287�22� 0.85186�20�
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they are given in the supplementary EPAPS Document �27�.
Using this information, together with Eqs. �2.19� and �2.18�,
and previously found B� and 	�, we have obtained the de-
sired exact values of � �see Table III�.

For a sequence of b�9, the exact determination of the
polynomial �2.20�, that is, knowledge of the coefficients
Q�N ,Nb�, can be hardly reached using the present-day com-
puters. However, to calculate 	� one does not need a com-
plete knowledge of polynomial a�B ,s�, but only its values at
the fixed point �see Eq. �2.19��. However, the polynomial
that appears in Eq. �2.5� can be conceived as grand partition
function of an appropriate ensemble, and consequently,
within the MCRG method, the requisite value of the polyno-
mial can be determined directly �18�. Owing to the fact that
we can obtain 	�=a�B� ,s� through the MC simulations, and,
knowing 	� from the preceding calculation of �, we can ap-
ply Eq. �2.18� to calculate �. In Table III, we present our
MCRG results of � for 11�b�201, for the chosen set of
stiffness parameter values �s=1, 0.9, 0.7, 0.5, 0.3, and 0.1�.

III. DISCUSSION AND SUMMARY

We have studied critical properties of semiflexible poly-
mer chains on the infinite family of the PF fractals whose
each member has the fractal dimension df equal to the Eu-
clidean value 2. In particular, we have calculated the critical

exponents � and � via an exact RG �for 3�b�9� and via the
MCRG approach �up to b=201�. Specific results for the criti-
cal exponents have been presented in Tables II and III.

In order to analyze the obtained results, in Fig. 3�a�, we
have plotted � as a function of stiffness parameter s, for
several values of fractal scaling parameter b. One can see
that for each b, exponent � monotonically decreases from the
value �=1, for s=0, corresponding to rigid rod, to the value
�SAW�b�, for s=1, corresponding to the flexible polymer
chain �18,28�. This, indeed, implies that for finite b, the mean
end-to-end distance for semiflexible polymers increases with
its rigidity, and is always between its values for the flexible
chain and the rigid rod. In the same figure, one can also
observe that when b increases, the curves ��s� become in-
creasingly sharper so that their limit looks to be �=1, at s
=0, whereas ��const., for 0�s�1. This observation may
imply that for very large b �beyond b=201�, the critical ex-
ponent � becomes independent of s. Here, one should note
that it is believed that critical exponent � is universal for
semiflexible SAWs on Euclidean lattices, that is, it does not
depend on s �15�. This expectation is based on universality
arguments, and it was exactly demonstrated for directed
semiflexible SAWs �14�. The same conclusion was also ex-
actly derived for semiflexible SAWs on the Havlin-Ben-
Avraham and three-simplex fractal lattices �15�. However, as
it was pointed out in �15�, in contrast to the case of homo-
geneous lattices, where rigidity only increases the persistence

TABLE II. The exact �3�b�9� and MCRG �11�b�201� results for the critical exponents � obtained
in this work, for the PF family of fractals. Each MCRG entry of the table has been obtained by performing
at least 105 MC simulations. Numbers in the brackets correspond to the errors of the last two digits,
determined by the MC simulation statistics �for example, for b=11 and s=0.9, we have �=0.77239�27�
�0.77239�0.00027�.

b ��s=1� ��s=0.9� ��s=0.7� ��s=0.5� ��s=0.3� ��s=0.1�

3 0.79248 0.81384 0.87230 0.94400 0.99061 0.99988

5 0.78996 0.79864 0.82629 0.88266 0.96922 0.99959

7 0.78111 0.78666 0.80342 0.83910 0.93233 0.99906

9 0.77464 0.77886 0.79108 0.81500 0.88946 0.99813

11 0.76959�27� 0.77239�27� 0.78194�26� 0.80127�27� 0.85478�15� 0.99659�03�
13 0.76494�18� 0.76923�25� 0.77739�25� 0.79250�25� 0.83325�29� 0.99415�11�
15 0.76232�17� 0.76571�24� 0.77307�24� 0.78678�24� 0.81825�26� 0.99022�14�
17 0.75976�17� 0.76226�23� 0.76962�23� 0.78205�22� 0.80885�24� 0.98385�18�
21 0.75522�16� 0.75754�10� 0.76411�09� 0.77496�21� 0.79717�21� 0.96152�27�
25 0.75199�15� 0.75406�07� 0.76001�09� 0.77000�19� 0.78993�20� 0.92615�31�
31 0.74822�12� 0.74954�20� 0.75559�19� 0.76515�18� 0.78315�18� 0.87448�29�
35 0.74530�14� 0.74773�19� 0.75278�18� 0.76276�17� 0.77889�17� 0.85207�25�
41 0.74332�08� 0.74487�06� 0.74966�08� 0.75837�16� 0.77439�16� 0.83262�21�
51 0.73969�17� 0.74148�17� 0.74614�07� 0.75381�15� 0.76970�15� 0.81726�17�
61 0.73643�17� 0.73930�16� 0.74352�05� 0.75051�14� 0.76579�14� 0.80992�15�
81 0.73314�15� 0.73527�14� 0.73935�06� 0.74640�19� 0.76050�12� 0.80041�13�

101 0.73103�11� 0.73280�04� 0.73610�14� 0.74313�12� 0.75689�12� 0.79482�12�
121 0.72865�13� 0.73030�22� 0.73459�28� 0.74071�11� 0.75405�11� 0.79097�11�
151 0.72771�07� 0.72840�06� 0.73219�11� 0.73848�10� 0.75102�10� 0.78618�08�
171 0.72631�12� 0.72752�05� 0.73094�10� 0.73830�10� 0.74850�09� 0.78338�10�
201 0.72486�12� 0.72633�05� 0.72958�12� 0.73583�04� 0.74755�09� 0.78077�10�
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length, but does not affect neither the scaling law governing
the critical behavior of the mean end-to-end distance, nor the
value of the critical exponent � of SAWs, one might expect
that presence of disorder in nonhomogeneous lattices, com-

bined with the stiffness, in some cases, can constrain the
persistence length, and consequently induces dependence of
� on s. This was explicitly confirmed in the same paper, by
exact calculation of the critical exponent � for branching
Koch curve, which turned out to be continuously decreasing
function of s, similar to functions depicted in Fig. 3�a�. Ap-
parently, the established dependence of � on s for PF fractals
with smaller values of b shows that considerable lattice dis-
order affects significantly the values of �, while the depen-
dence of � on s gradually disappears for PF fractals with
smaller disorder �appearing for larger b�. These facts confirm
the assumption �15� that lattice disorder, combined with the
polymer stiffness, has a predominant impact on the critical
behavior of semiflexible polymers.

In Fig. 3�b�, data for � as a function of 1 /b are depicted,
for various values of s. It appears that for each considered
value of stiffness s in the range 0�s�1, the critical expo-
nent � is monotonic function of the scaling parameter b, in
the region of b studied. It can be also seen that for large fixed
b, the differences between the values of ��s� �for various s�
decrease when b increases, which brings us to the question of
the behavior of � in the fractal-to-Euclidean crossover, when
b→�. Concept of the fractal-to-Euclidean crossover is often
used in order to study if and how various physical properties
change when inhomogeneous lattices approach homoge-
neous �translationally invariant Euclidean� lattice. By tuning
some conveniently chosen parameter of the fractal lattice
�such as scaling parameter b in the case of PF fractals�, prop-

TABLE III. The exact �3�b�9� and MCRG �11�b�201� results for the critical exponents � obtained
in this work, for the PF family of fractals. Each MCRG entry of the table has been obtained by performing
at least 5 ·105 MC simulations. The numbers in the brackets represent the error bars related to the last two
digits, for example, for b=201 and s=0.9, we have �=2.216�13��2.216�0.013.

b ��s=1� ��s=0.9� ��s=0.7� ��s=0.5� ��s=0.3� ��s=0.1�

3 1.6840 1.6796 1.6056 1.3368 0.8189 0.2524

5 1.7423 1.7406 1.7236 1.6250 1.1654 0.3363

7 1.7614 1.7605 1.7552 1.7247 1.4586 0.4302

9 1.7807 1.7795 1.7748 1.7596 1.6335 0.5340

11 1.8048�32� 1.7987�31� 1.7908�28� 1.7753�25� 1.7194�17� 0.6498�07�
13 1.8158�32� 1.8136�33� 1.8095�30� 1.8020�26� 1.7573�21� 0.7746�08�
15 1.8395�25� 1.8251�35� 1.8267�32� 1.8138�28� 1.7827�22� 0.9082�09�
17 1.8595�27� 1.8590�36� 1.8484�33� 1.8281�29� 1.7981�23� 1.0491�11�
21 1.8944�29� 1.8834�37� 1.8848�33� 1.8760�31� 1.8222�25� 1.3261�13�
25 1.9244�42� 1.9106�40� 1.9101�36� 1.8932�34� 1.8452�26� 1.5333�16�
31 1.9549�34� 1.9538�47� 1.9291�43� 1.9281�37� 1.8839�29� 1.6914�17�
35 1.9810�50� 1.9826�50� 1.9526�69� 1.9398�35� 1.9033�30� 1.7425�17�
41 1.9842�53� 1.9921�52� 1.9846�46� 1.9763�43� 1.9305�30� 1.7778�18�
51 2.0398�62� 2.0366�61� 2.0325�53� 1.9991�48� 1.9779�27� 1.8202�19�
61 2.0744�67� 2.0420�67� 2.0428�55� 2.0323�52� 1.9899�40� 1.8418�21�
81 2.0912�60� 2.0903�81� 2.0773�49� 2.0819�78� 2.0124�48� 1.8961�24�

101 2.124�17� 2.1316�95� 2.1196�77� 2.1233�73� 2.0655�54� 1.9328�27�
121 2.172�11� 2.158�12� 2.145�11� 2.1429�78� 2.1040�60� 1.9577�30�
151 2.175�13� 2.182�13� 2.182�10� 2.174�10� 2.1356�65� 1.9782�34�
171 2.191�14� 2.198�15� 2.192�13� 2.1846�94� 2.1484�79� 2.0219�35�
201 2.2154�89� 2.216�13� 2.2023�85� 2.219�14� 2.1598�86� 2.0810�42�

FIG. 3. �Color online� Plot of the end-to-end distance critical
exponent � of semiflexible polymer chain on PF fractals: �a� as a
function of stiffness parameter s, for various fractal scaling param-
eter b, and �b� as a function of 1 /b, for various values of stiffness
parameter s �the horizontal dashed line represents the Euclidean
value �=3 /4 for flexible polymers, s=1, whereas thin solid lines
serve only as guides to the eye�.
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erties of the corresponding Euclidean lattice �square lattice in
this case� can be gradually approached. Studies of the flex-
ible SAW models on Sierpinski gasket family of fractals
�20,26,29–33�, as well as on PF fractals �18�, revealed that
crossover behavior of critical exponents can be rather subtle
in the sense that not all critical exponents tend to their Eu-
clidean values, and even when they do so it can be accom-
plished in quite unexpected manner. For instance, according
to the finite-size scaling arguments, when b→� exponent �
of flexible polymers �s=1� on PF fractals approaches the
Euclidean value 3/4 from below �18�, which together with
the fact that � is monotonically decreasing function for b up
to 201, means that for some value of b larger than 201 there
should exist a minimum. On the other hand, for s=0, expo-
nent � is equal to 1 for each b. For 0�s�1, apparent trend
of the curves presented in Fig. 3�b� suggests that limiting
value of �, when b→�, does not depend on particular value
of s, and following the behavior of � for flexible polymers, it
should be equal to the Euclidean value 3/4. However, we
would not like to draw here such a definite conclusion with-
out additional investigations.

Continuing the comparison of the criticality of flexible
and semiflexible SAWs on the PF fractals, in Fig. 4, we have
depicted the data from Table I for the critical fixed points B�.
On the left-hand side of this figure, one can notice that B�,
which is equal to the reciprocal of the connectivity constant
�, is monotonically decreasing function of s, for each b con-
sidered. This has been expected, since � has the physical
meaning of the average number of steps available to the
walker having already completed a large number of steps, so
that larger flexibility of the polymer chain implies larger �,
and consequently ��s=0����0�s�1����s=1�. In Fig.
4�b�, one can also observe that for fixed s, the fixed point B�

decreases with b. Furthermore, B� becomes almost linear
function of 1 /b for large b, which allows us to estimate the
limiting values of B� for b→�. The obtained asymptotic
values are given at the end of Table I. The value B��s=1�
=0.37915�0.00040, should be compared with the Euclidean
value 0.3790523�3� for the square lattice, obtained in �34�.

As one can see, the agreement is very good, and we may say
that for flexible polymers the values B��b�, in the limit b
→�, converge to the Euclidean value. Similarly, we expect
that, for given s�1, the values B��b� of semiflexible poly-
mers also converge to the corresponding d=2 Euclidean val-
ues �which are functions of s�. In Fig. 5�a�, we have plotted
the lines obtained by linear fitting of the large b data for
B��s� for s=0.1, 0.3, 0.5, 0.7, 0.9, and s=1. In the present
situation, estimated limiting values of the connectivity con-
stants ��s�=1 /B��s ,b→�� are depicted in Fig. 5�b�, as
function of s. It seems that ��s� is linear function of s, im-
plying that connectivity constant for semiflexible SAWs on
square lattice could be a linear function of the stiffness pa-
rameter s. Such expectation is also in accord with the exact
results obtained for directed semiflexible SAWs �14�.

To make our analysis of semiflexible SAWs on PF fractals
complete, in Fig. 6, we present the data found for the critical
exponent �. As it was explained in Sec. II, exponent � is
given by Eq. �2.18�: �=2 ln�	� /b� / ln 	�, where eigenvalues
	� and 	� �given by Eqs. �2.10� and �2.19�, respectively� are
evaluated at the fixed point B=B� of the RG Eq. �2.6�. For
b=3, the fixed point B� is given by Eq. �2.13�, and since
dependence of 	� and 	� on B is known by exact means, the
curve ��b=3,s� in Fig. 6�a� was plotted according to the
closed-form exact formula. For b=5, 7, and 9, RG Eq. �2.6�
was also found explicitly, but its fixed point can be calcu-
lated only numerically in these cases. Nevertheless, this task
can be done for large number of s values, and putting fixed
points B��s� calculated accordingly, into the exact expres-
sions found for 	� and 	�, one obtains the corresponding
values for �, and, consequently, curves for b=5, 7 and 9 in
Fig. 6�a�. For larger values of b, depicted � curves were
obtained by interpolating the data found by MCRG approach
for s=0.1, 0.3, 0.5, 0.7, 0.9, and s=1 �Table III�, and gener-
alizing the fact ��b ,s=0�=0, exactly found for smaller val-
ues of b, to all b values. One can see that for each b, the

FIG. 4. �Color online� Data for the fixed point values B� �the
reciprocal connectivity� of semiflexible polymer chain plotted as:
�a� function of stiffness s, for various values of the fractal parameter
b, and �b� function of 1 /b, for various values of s.

FIG. 5. �Color online� �a� Linear fitting of the data �full squares�
for the fixed point B� �see Table I� as function of 1 /b for large
values of b, and various s. Circles correspond to the extrapolated
limiting values of B��s ,b→��, and their precise values are given in
the last row of Table I. �b� Plot of the connectivity constant ��s�
=1 /B��s ,b→��. Dashed line is the linear fit of the data presented
by circles, which correspond to ��s� for s=0, 0.1, 0.3, 0.5, 0.7, 0.9,
and s=1.
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critical exponent � is monotonically increasing function of
the stiffness parameter s. The dependence of � on s is in
accord with the discussed nonuniversality of �, and also with
the results obtained for � of SAWs on the branching Koch
curve and Havlin-Ben-Avraham fractal �15�. However, one
should note here that while for the Koch curve both � and �
depend on s, in the case of Havlin-Ben-Avraham fractal, only
� is nonuniversal ��=1 for all values of s�. Besides, in �15�,
it was shown that neither � nor � depends on s for SAWs on
the three-simplex fractal. The observed different behavior of
exponents � and � on various fractals is an intriguing fact
and imposes the question of the universality of � for semi-
flexible SAWs on homogeneous lattices. One might try to
draw a helpful conclusion by looking at the large b behavior
of the functions ��s�, plotted in Fig. 6�a�. One can see that as
b grows, the curve ��s� becomes sharper, so that for b
=201, it is almost constant in the large part of the region 0
�s�1, whereas in the vicinity of s=0, it rapidly drops to
the value �=0, at s=0. Therefore, it may be concluded that
for b�1 and 0�s�1 exponent � becomes independent of s.
Furthermore, in Fig. 6�b�, we perceive that for each studied
s, the critical exponents � monotonically increase with b, and
for b=201 acquire almost the same value ��2.2. These ob-
servations may imply that � for semiflexible SAWs on ho-
mogeneous lattices is universal. However, it is known that
critical exponent � for flexible polymers �s=1� on the two-
dimensional Euclidean lattices is equal to �=43 /32, which is
far from the apparent limiting value 2.2 �suggested by the
plots in Fig. 6�b�, when 1 /b→0�, implying that � for PF
fractals does not tend to its Euclidean value for large b. This
may seem odd, but it fits quite well into the peculiar picture
which have emerged during the last two decades for the
fractal-to-Euclidean crossover behavior of the exponent � of
flexible SAWs on PF �18� and on Sierpinski gasket �SG�
family of fractals �20,32,33�, as well as for some models of
directed SAWs on SG fractals �31�. For instance, using
finite-size scaling arguments, Dhar �20� concluded that � for

SAWs on SG fractals at the fractal-to-Euclidean crossover
approaches the non-Euclidean value 133/32. In a similar
manner, for PF fractals, it was also demonstrated �18� that in
the limit b→�, exponent � tends to 103/32, which is again
the non-Euclidean value. In addition, numerical analysis of
the large set of exact values of � obtained for the piece-wise
directed SAWs on SG fractals, as well as an exact asymptotic
analysis �31�, also showed that the limiting value of � differs
from the corresponding Euclidean value. In all these cases,
the established crossover behavior could not have been pre-
dicted only on the basis of � values obtained for relatively
small b �up to b=201, for instance�. On these grounds, we
may infer that in the crossover region, when b→�, critical
exponent � does not depend on the stiffness s, and ap-
proaches the non-Euclidean value.

In conclusion, we may say that family of plane-filling
fractals proved to be useful for investigation of the effects of
the rigidity on the criticality of SAWs on nonhomogeneous
lattices. It is amenable to applying exact and Monte Carlo
renormalization group study, which we performed on large
number of its members. The obtained results show that the
critical behavior of semiflexible SAWs is not universal, in a
sense that critical end-to-end exponents �, as well as entropic
exponents �, continuously vary with the stiffness parameter
s. Such nonuniversality does not occur on regular lattices,
but it was found for SAWs on the branching Koch curve,
suggesting that polymer behavior in realistic disordered en-
vironment might be more affected by its stiffness than it was
expected. Apart from the stiffness parameter s, critical expo-
nents also depend on the fractal parameter b, but the trend of
functions ��s� and ��s� is similar for different b values. This
similarity becomes more pronounced as b grows and ap-
proaches the fractal-to-Euclidean crossover region �b→��.
Assuming that critical exponents on regular lattices do not
depend on s, it would be challenging to reveal what exactly
happens with the exponents in the limit b→�, which we
would like to investigate in the future.
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APPENDIX

Here, we give the coefficients Q�N ,Nb� of the RG Eq.
�2.20� for b=5 PF fractal:

Q�0,0�=1, Q�1,0�=1, Q�1,1�=2, Q�2,0�=1, Q�2,1�
=2, Q�2,2�=2, Q�3,0�=1, Q�3,1�=4, Q�3,2�=6, Q�3,3�
=4, Q�4,0�=1, Q�4,1�=4, Q�4,2�=10, Q�4,3�=12,
Q�4,4�=6, Q�5,2�=6, Q�5,3�=18, Q�5,4�=18, Q�5,5�=6,
Q�6,2�=2, Q�6,3�=20, Q�6,4�=38, Q�6,5�=32, Q�6,6�
=12, Q�7,2�=2, Q�7,3�=8, Q�7,4�=28, Q�7,5�=34,
Q�7,6�=32, Q�7,7�=10, Q�8,3�=4, Q�8,4�=16, Q�8,5�
=52, Q�8,6�=62, Q�8,7�=48, Q�8,8�=14, Q�9,4�=10,
Q�9,5�=34, Q�9,6�=70, Q�9,7�=54, Q�9,8�=34,

FIG. 6. �Color online� Data for the SAW critical exponent �
presented as: �a� function of the stiffness parameter s, for various
values of the fractal enumerator b, and �b� function of 1 /b, for s
=1, 0.9, 0.7, 0.5, 0.3, and 0.1 �the horizontal dashed line represents
the two-dimensional Euclidean value �=43 /32 for flexible poly-
mers s=1�.
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Q�9,9�=6, Q�10,5�=18, Q�10,6�=38, Q�10,7�=78,
Q�10,8�=68, Q�10,9�=44, Q�10,10�=4, Q�11,5�=2,
Q�11,6�=14, Q�11,7�=44, Q�11,8�=70, Q�11,9�=52,
Q�11,10�=36, Q�11,11�=6, Q�12,7�=18, Q�12,8�=30,

Q�12,9�=56, Q�12,10�=42, Q�12,11�=34, Q�12,12�=6,
Q�13,8�=4, Q�13,9�=20, Q�13,10�=28, Q�13,11�=30,
Q�13,12�=22, Q�13,13�=2, Q�14,11�=22, Q�14,12�=22,
Q�14,13�=12, Q�15,12�=4, Q�15,13�=8.
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